NGS Based Applications – Future of Genomics

Adam Kotorashvili PhD

Head of Genome Center

National Center for Disease Control and Public Health (NCDC)

04.04.2019

National Center for Disease Control and Public Health

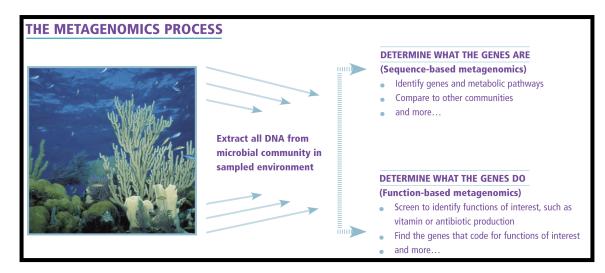
NGS Applications – Basic Science

- Ancient DNA
- DNA mixtures from diverse ecosystems, metagenomics
- Resequencing previously published reference strains
- Identification of all mutations in an organism
- Errors in published literature
- Expand the number of available genomes
- Comparative studies

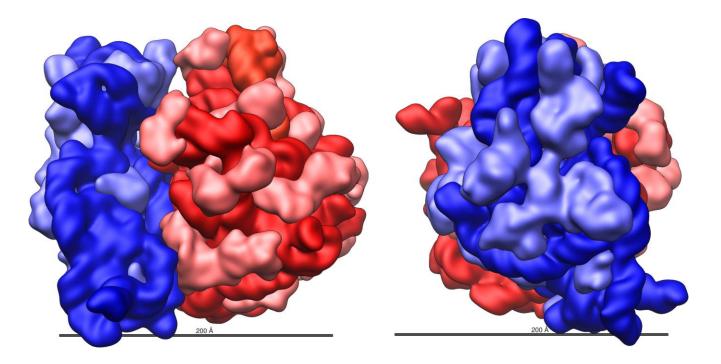
NGS Applications – Basic Science

- Deciphering cell's transcripts at sequence level without knowledge of the genome sequence
- Sequencing extremely large genomes, crop plants
- Detection of cancer specific alleles avoiding traditional cloning
- Chip-seq: interactions protein-DNA
- Epigenomics
- Detecting ncRNA
- Genetic human variation : SNP, CNV (deseases)

NGS applications – **Microbial Genomics**


 rapidly detect and treat pathogens (disease-causing microbes) in clinical practice

- develop new energy sources (bio fuels)
- monitor environments to detect pollutants
- protect citizenry from biological and chemical warfare
- clean up toxic waste safely and efficiently


NGS applications – Metagenomics

- Characterizing the biodiversity found on Earth
- The growing number of sequenced genomes enables us to interpret partial sequences obtained by direct sampling of specif environmental niches
- Examples: ocean, acid mine site, soil, coral reefs, human microbiome which may vary according to the health status of the individual

NGS applications – 16S RNA Metagenomics

ribosomal ribonucleic acid (rRNA) is the RNA component of the ribosome, and is essential for protein synthesis in all living organisms Three-dimensional views of the ribosome, showing rRNA in dark blue (small subunit) and dark red (large subunit). Lighter colors represent ribosomal proteins.

NGS applications – Forensics - MiSeq FGx

NGS can provide more information than traditional methods. Using the MiSeq FGx System DNA database laboratories can:

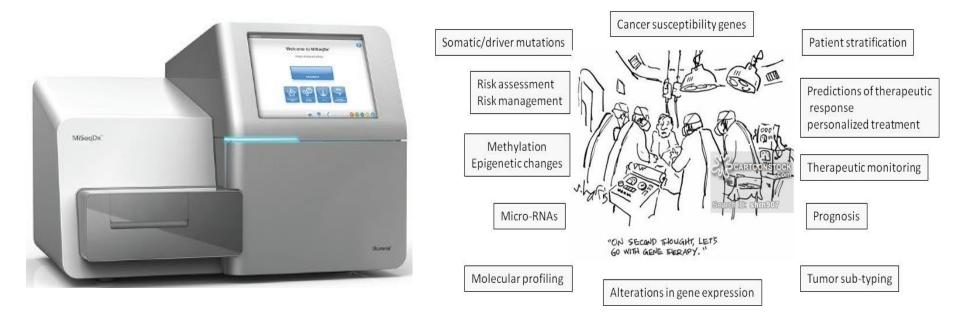
Simultaneously analyze every locus now in use by crime laboratories around the world

Future-proof local, national, and international databases

Easily expand sequencing runs to include more markers

Benefit from minimal sample preparation time

National Center for Disease Control and Public Health


NGS applications – Molecular Medicine

- improve diagnosis of disease
- detect genetic predispositions to disease
- create drugs based on molecular information
- use gene therapy and control systems as drugs
- design "custom drugs" (pharmacogenomics) based on individual genetic profiles

National Center for Disease Control and Public Health

NGS applications – Clinical – MiSeq Dx

The MiSeqDx System, designed specifically for clinical laboratories, delivers a broad range of sequencing applications right at your fingertips. The flexible, scalable system offers tunable read lengths and output options to support diagnostics and research needs.

1) <u>Diagnostic tests</u>: defining the cause of a rare disease or for identifying high-risk susceptibility for a specific disease

2) <u>Tests for Mechanisms of diseases</u>: e.g. examination of the genetic changes in a malignant tumor, Hematological Disorders, Neurology and Psychiatry, Vision and hearing, Cardiology as well as many undiagnosed Disease.

- 3) <u>Pharmacogenomics</u>: refers to the relation between the human genetic profile and individual differences in clinical drug response. The aim of pharmacogenomics is to optimize treatment outcome and individualize therapy.
- 4) <u>Predicting susceptibility</u>: genetic risk profiling for common diseases

National Center for Disease Control and Public Health

Analysis of Structural chromosomal variants using NGS

- structural variants in the Human Genomes
- structural variants and Human Diseases

NGS in Oncology

- Familial Genetic Testing
- Molecular calcifications of Diseases
- Circulating cell free tumor DNA and circulating tumor cells
- Treatment in last resort patients
- Treatment monitoring
- Biomarkers in Clinical decision-making

Next Generation Sequencing in hematological Disorders

- Acute Myeloid Leukemia
- CSF3R mutation in chronic Neutrophilic Leukemia
- Non-Hodgkin Lymphomas
- Thrombocytopenia Absent Radius Syndrome

- Next Generation Sequencing in Neurology and Psychiatry
 - Epilepsy
 - Ataxia
 - Autism
 - Neuromuscular Disorders
 - Movement Disorders
 - Neurodegenerative Disorders with Dementia
- Next Generation Sequencing in Dysmorphology
 - Congenital defects syndromes
 - Genetic testing in Dismorphology
 - Screening of Rare Disorders in Newborn

Next Generation Sequencing in Vision and Hearing Impariment

- Vision and hearing Disorders
- Digenic and Oligogenic Inheritance

Next Generation Sequencing as a tool for Noninvasive prenatal tests

- NGS of Fetal DNA
- properties of cell free fetal DNA
- Maternal Fetal DNA comparative analysis

Next Generation Sequencing in Cardiology

- Cardiomyopathies
- Hypertrophic Cardiomyopathies
- Arrhythmias
- Brugada Syndrome
- Atrial Fibrillation

Next Generation Sequencing in Pharmacogenomics

- NGS in noncancerous pharmacokinetics
- NGS in Transplantology
- Multigene Pharmacogenetics

Next Generation Sequencing in Undiagnosed Diseases

- NGS testing for Rare Disease
- pathogenetics

National Center for Disease Control and Public Health

SOPHiA Genetics – Overview

PHiA DDM			
	VDB ANAL ADNstand Variant Database Browser #11030-0011	Demo S	Sophia Genetics
PROJECT Int	erpretation 2 🗮 🍇 SAMPLE #180672 ADNstandard < 1/22 🗮 RUN 19/07/201	3 Solid Tumor Solution by SOPHiA GENETICS ADNstandard S1	— Jean Dupont
Overview	OncoPortal Variants ক্তি ^খ হ	⊙ Patient's Disease (0)	REPORTED 9/9 ★ BRAF CDKN2A EGFR HRAS KRAS PIK3CA Solid Tumor Solution by Sophia somatic
TEST	A Patient		Test Informati
42 42 GENES	Interpretation Project Delete Complete Understand Delete Od/09/2018	All Genes •	Retained Variant Z Low Confidence Va
360 VARIANTS 43	Name Interpretation 2 Start Date 04/09/2018 End Date Virtual Panel STS_v1 (42 genes) Status draft Owner Jean Dupont	Predi C: 33-	4 Public Databa
RETAINED 317 W CONFIDENCE (ARIANT DEPTHS	Conclusion 1. Genomic alterations associated to approved therapies in patient's Save Greate Report Greate Report	D: 3 Pred	E: 7 ESP 5400 iiction A: 16 COSMIC V83
30 EPTH MIN 9385	None Reported! Clinical Results 2. Other potentially actionable genomic alterations: > KRAS p. (Gly13Asp) exon 2 - this mutation has been associated with Resistance or Non-Response to Chemotherapy, MEK Inhibitor in Non-small Glynesteen associated with	Pathogeni	65 8 dbsNP 150
JEPTH MAX	Cell Lung Carcinoma. > BRAF p. (Valk00Glu) exon 15 - this mutation has been associated with Sensitivity to BRAF Tyrosine Kinase Inhibitor, MEK Inhibitor in Non-small Cell Lung Carcinoma. > EGFR p. (Thr790Met) exon 20 - this mutation has been associated with Sensitivity to 3rd generation EGFR Tyrosine Kinase inhibitor in Non-small Cell Lung Carcinoma. > EGFR p. (Thr790Met) exon 20 - this mutation has been associated with		ability GnomAD (2.0.2 63 O UUGS TRIALS
	Sensitivity to 3rd generation EGFR Tyrosine Kinase inhibitor in Non-small Cell Lung Carcinoma. > EGFR p. (Leu858Arg) exon 21 - this mutation has been associated with Sensitivity to 2nd generation EGFR Tyrosine Kinase Inhibitor in Non-small Cell Lung Carcinoma. > EGFR p. (Glu746_Ala750del) exon 19 - this mutation has been associated with Sensitivity to 2nd generation EGFR Tyrosine Kinase Inhibitor in Non-small Cell Lung Carcinoma.	D: 1	T2: 1

SOPHiA Genetics – Overview

PHIA DDM	_							_					_			-	
WORKSPACE Requests			'DB abase Browse		AL AD #11030-	Nstand 0011				~		1	Demo S	ophia Genetics	Requests		8
ROJECT Interpretation	2 🔳	ି 🔩 SA	MPLE	#180672	ADNstanda	ard < 1/22 🛛 🧮	RUN 19/07/2018	Solid Tumo	r Solution by SO	PHIA GENETI	CS ADNstandard	I S1				— Jean Dı	upont
Overview	OncoP		V	'arian പ്രൂ	ts	•						⊙ Patient's	s Disease (0)	REPORTED 9/9 ★ BRAF CDKN2A EGFR HRAS KRAS PIK3CA	Solid Tur	nor Solut	tion by Soph soma
REENING GENES	SNVs/	INDELs	CNVs	FUSI(ONS W	/ARNINGS										Inter STS	pretation Scope _v1
•		Variant I	List - sorted b	y: Predic	tion>Pathoge	nicity class>Gene										save colum	n preferences 🛛
	P •	P ★	A S	т	Gene 🛔	dbSNP	ID ClinVar	Depth	Community	Freq	VF% Processed Clin	nVar rating	c.DNA	Coding consequence	ref	alt	Actionabi
SOPHiA Filters	A	6 \star	 ✓ 	SNP	BRAF	rs113488022	rs113488022	7747		2973	9.8 Pathogenic/Like	ely_pathog (c.1799T>A	missense	А	Т	11) 12) II) 1
tained Variants		6 *	\checkmark	INDEL	EGFR	rs121913421	rs121913421	9010		765	1.5 drug_response		c.2235_2249de	inframe_15	AGGAA	А	
43	A	6 \star	 ✓ 	SNP	KRAS	rs121913529	rs121913529	5581		2329	6.7 Pathogenic/Like	ely_pathog (c.35G>A	missense	С	т	11) 12) II) T
ghly Pathogenic		6		SNP	MAP2K1	rs730880503	rs730880503	6659		760	31.2 Pathogenic		c.355C>T	missense	С	Т	
14	A	❹ ★	\checkmark	SNP	KRAS	rs112445441	rs112445441	5548		1839	13.7 Pathogenic/Like	ely_pathog (c.38G>A	missense	С	т	
		*		INDEL	CDKN2A			5842		592	8.8		c.68dupG	frameshift	ACCCC	ACCCCC	
tentially Pathogenic	A			SNP	CTNNB1	rs121913400	rs121913400	5771		668	31.9 Pathogenic/Like	ely_pathog (c.98C>A	missense	С	А	
5	A			INDEL	CTNNB1	rs587776850	rs587776850	5686		668	9.8 Pathogenic		c.133_135delTCT	inframe_3	CCTT	С	
known Significance	A		 ✓ 	SNP	EGFR	rs28929495	rs28929495	9248		805	23.8 Pathogenic		c.2155G>A	missense	G	A	
			 ✓ 	SNP	KIT	rs121913507	rs121913507	5173		549	8.4 Pathogenic/Like	ely_pathog (c.2447A>T	missense	А	Т	
. 17	A			SNP	MAP2K1	rs1057519729	rs1057519729	7127		745	32.8 Pathogenic/Like	ely_pathog (c.167A>C	missense	A	С	
ely Benign				INDEL	MET			9385		474	6.5		c.713delT	frameshift	GTTTT	GTTT	
7	A		 ✓ 	SNP	NRAS	rs121913254	rs121913254	4294		998	11.8 Pathogenic/Like	ely_pathog (c.181C>A	missense	G	т	
			 ✓ 	SNP	PIK3CA	rs121913279	rs121913279	6482		1268	16.7 Pathogenic/Like	ely_pathog (c.3140A>G	missense	А	G	
Confidence Variants	A	*	~	SNP	PIK3CA	rs104886003	rs104886003	5368		1134	7.9 Pathogenic/Like	ely_pathog (c.1633G>A	missense	G	А	
317	Ð	*	 ✓ 	SNP	EGFR	rs121434568	rs121434568	8999		928	2.5 drug_response		c.2573T>G	missense	Т	G	
ged Variants	Ð			SNP	ERBB2			6326		276	4.7		c.2411G>A	missense	G	А	
	B			SNP	RAF1			6176		138	5.1		c.1279A>C	missense	Т	G	
° 14	Ð			SNP	RET			6578		138	5.3		c.2720A>C	missense	А	С	
	G	0		SNP	ALK	rs3795850	rs3795850	5902		5750	9.7 Benign		c.3375C>A	synonymous	G	Т	
	G	0		SNP	FGFR3	rs7688609		6554		19036	99.9		c.1953G>A	synonymous	G	A	
	G	0		SNP	FOXL2	rs61750361	rs61750361	7221		659	6.6 Benign		c.501C>T	synonymous	G	А	

SOPHiA Genetics – Overview

SOPHIA DDM					-	-	-	-	-		a			_	
WORKSPACE Requests Varian	VDB : Database Bro		ADNstan 1030-0011	d					×~		\geq		Demo	Sophia Genetics	
PROJECT Interpretation 2 =	💫 SAMPLE	#180672 ADN	lstandard < 1	1/22 🗮 RUN 1	9/07/20	18 Soli	d Tumo	or Solution	n <mark>by SOPH</mark> i	A GENETICS	<u>8</u> A	DNstandard S1			— Jean Dupont
Overview OncoPorta	ıl	Variants १ _९										⊙ Pat	tient's Disease (0)	REPORTED 9/9 ★ BRAF CDKN2A EGFR HRAS KRAS PIK3CA	Solid Tumor Solution by Sophia somatic
SCREENING GENES SNVs/INDE	Ls CNVs	s FUSIONS	WARNI	NGS											Interpretation Scope STS_v1
→ Virtual Panels:	select / uns	select all Search	h:	✓ C	✓ Case sensitive Exact match >										
▼ STS_v1[root] 42 D		Mana			M	olecular	Variar	its				Structural Variant	s		
cancer pulmon 1 mama 4	Filter Chr	(IGV)	Predictio			Types				onsequences		CNV Amplificatio	-		
Test 1 7		ALK ALK	A B C	•••••		INDEL 3	Total	FSFT N_SE	INFR SYN	SUTR SUTR		Deletion Duplication			
	✓ 2 ✓ 10	• ALK	• •		12	0	11	1	1		14 9				
	✓ 7	• EGFR	• • •	•	11	3	14	3	1 1		9				
	✓ 1	• NRAS	• •		11	0	11	1		2	8				
	✓ 5	• TERT	• •		8	4	12	1			3 8				
	✓ 2	• ERBB4	•		6	3	9				9				
	✓ 19		•		8	2	10		1		9				
		• ERBB2	• •		4	1	5	2			3				
		AKT1	•		5		6				6				
		RAC1 HIST 1H3B	•		7 5		7 6		1	4	7				
		HIST HISD			3	3	6		1	2	4				
	✓ 6	ROS1			1	0	1				1				
		SF3B1	•		2	1	3				3				
	✓ 4	• PDGFRA	•		14	4	18		2		16				
	✓ 18	• SMAD4	•		7	4	11			2	9				
		MAP2K1	• •	•	6	1	7	2			5				
		• H3F3B	•		3		4	_	1	2	1				
		CDKN2A	• •			2		1		2 1	3				
	✓ 4	FBXW7	•		4	2	6				6				

Our Collaborators

(Incomplete list)

National Center for Disease Control and Public Health

Genome Center at National Center for Disease Control and Public Health

Projects at Genome Center

1. Completed project with G. Eliava Phage Institute : "Comparative Whole Genome Sequencing of Diagnostic *Brucella* Phages" Project was funded by DTRA, Manuscript is published

2. Completed project with Tbilisi Agrarian University : "Genetic characterization of mitochondrial DNA of Georgian wheat's varieties" funded by AgrUni internal grant foundation, manuscript published

- 3. Completed project with Biotechnology Institute of National Academy of Sciences of the Kyrgyz Republic: "Microbiological Monitoring of Uranium-Contaminated Environments" funded by ISTC
- 4. Completed project with G. Eliava Phage Institute: "Characterization of mechanisms of adaptive phagehost co-evolution using next generation sequencing and phenotypic profiling " funded by GRDF
- 5. Ongoing project with AIDS center "Genetic characteristic of hepatitis C virus in Georgia: implications for hepatitis C elimination program" Funded by CDC
- 6. Ongoing project G. Eliava Phage Institute: "Phage mediated antibiotic resistance gene transfer in marine, freshwater and extreme environments" funded by GRDF

7. Ongoing project with Batumi State University, Institute of Phytopathology "Whole Genome Sequencing of quarantine plant bacterial pathogen *Ralstonia Solanacearum* Isolated in Republic of Georgia" funded by GRDF and Rustaveli Foundation.

Thank you for your attention !

National Center for Disease Control and Public Health