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Mammalian spermatozoa maturation
In Vivo
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In Vitro Capacitation

* |t is very different from in vivo capacitation

* |t takes some hours

* |t involves a low percentage of sperm cells

* |t is a discontinous (and reversible?) process

* |t is driven by the balance of activating and inhibiting factors

* |t makes the spermatozoa prone to biochemical damages (epigentic risk)
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Possible implemenatations:

More physiological systems
Biomaterials




Sperm membrane remodelling

Cytoskeleton reorganization

Cytosolic signaling

Capacitation
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Capacitation, Acrosome Reaction and

Fertilization
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Sperm head domains
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Cholesterol and mebrane remodelling

&  DE NOVO SYNTHESIS OF CHOLESTEROL
(} INFLUX AND EFFLUX OF CHOLESTEROL
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Fig. 2. Schematic representation of major cholesterol synthesis and trafficking sites during sperm maturation. A limited quantity of
cholesterol required to synthesize new plasma me mbranes du ng spermatogenesis in seminiferous tubules originates from de novo
sy nth in spermatocytes (34). The stage-specific expression of cholesterogenic enzymes farnesyl dl[)ll(lhphdlt I.um_)_\l transferase 1
(FDFT1), CYP51, and POR during spermatogene  displayed in gray boxes (left) (24). Supporting Sertoli cells provide an addi-
tional source of cholesterol for spermatoger Sertoli cells acquire cholesterol by de novo synth
external cholesterol from HDL (37) by specialized cholesterol tra

s from acetate (35) or import
sporters (36). Another important source of cholesterol in Sertoli
11‘}11 be from the recycling of lipid-rich residual bodies and apoptotic germ cells (39). Excess cholesterol can be esterified to
rs (CE) and stored in lipid droplets, serving as cholesterol reservoirs (40). Some cholesterol can be effluxed to HDL
rse cholesterol transport (41). Spermatozoa formed in the testis enter the caput epididymis and progress to the caudal region,
pididymis possesses the ability for de novo cholesterol synthesis (51), or it can import cholesterol from the ci
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The principal cells of the epididymis secrete
cholesterol exchange with maturing sperm cel
transit in several species, re
results in an incre
further de:

tlation (59).
ing cassette sub-family G member 1 (ABCG1) (53).
all membranous vesicles known as epididymosomes

which could serve as a source for
(128). The cholesterol content of sperm membranes is decreased during epididymal
ilting in the decreased ratio of cholesterol (CH) to phospholipids (PL) (48). The loss of cholest
ase in sperm membrane fluidity and sperm motility (71). The content of cholesterol in the sperm membra
d in the female reproductive tract, mostly by the process of capacitatic Albumin serves as a chole
ing capacitation. Prost: e able to fuse with the membranes of spermatozoa, to increase mot

and to prevent rosome reaction (73). Individual data were obtained from in vitro and in vivo experiments on different mam-
malian species and used to collate this scheme.

| acceptor
d

Or

-8 prese nt in the l]dllll-lll d

Keber et al.,Journal of Lipid Research Volume 54, 2013




Bicarbonate and DRMs
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Membrane fluidity
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Membrane fusogenicity and sperm fate
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Cytosckeleton reorganization




Cytosckeleton reorganization
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Intracellular signalling
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Figure | Ca’" channels and pumps that have been immunoloca-
lized in mammalian sperm. Arrows indicate the most common direc-
tion of Ca** movement caused by these entities in most cell types.
The chief channels and pumps involved in hyperactivation are
CatSper channels and PMCA, which are indicated by large arrows.
Others that have been identified include the following: sarcoplas-
mic/endoplasmic reticular Ca®>* ATPase (SERCA), IP;-gated channels
(IP3); voltage-operated Ca’"channels (VOCC), TRPC Ca’" chan-
nels, secretory pathway Ca’* ATPase (SPCA), NCX, mitochondrial
uniporter (MCU) and CNG Ca’" channels.

Olson et al., Molecular Human Reproduction, Vol.17, No.8 pp. 500-510, 2011
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Ion channels work together to ensure that sperm cells are hyperactivated.
Sperm cells contain a variety of ion channels that control the movement of ions and protons (H7) into and out of the cell

(Mannowetz et al., 2013). As a sperm cell moves up the fallopian tube, the CatSper ion channel (right), which controls

the movement of calcium ions (Ca®*), is partially activated as a result of alkalinization inside the cell (caused by protons
leaving through the Hv1 ion channel) and low levels of progesterone outside the cell. As the sperm gets closer to the
egg, the increased levels of progesterone inhibit the Slo1 ion channel, causing potassium ions (K*) to leave the cell. This
hyperpolarizes the cell membrane and leads to full activation of the CatSper ion channel. The resulting influx of large
numbers of calcium ions leads to hyperactivation of the sperm—the vigorous tail thrashing motion thatis a

prerequisite of fertilization. Protons and calcium ion can also move through the Ca2+ ATPase transporter (left).

https://elifesciences.org/articles/01469/figures




Acrosome reaction
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IVF on Oviductal Cells Monolayers
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IVF on 3D scaffolds




Biomaterials: Graphene Oxide

Table 2. Effect of different GO concentration on IVF outcome.
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Different superscript denote statistically different groups of data (p<.05).
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