Next Generation Sequence (NGS) Technologies

Adam Kotorashvili PhD

Head of Genome Center

National Center for Disease Control and Public Health (NCDC)

03.04.2019

National Center for Disease Control and Public Health

- Overview of Sequencing History
- ✤ Next Generation Sequencing (NGS) Revolution in Genome Research
- Illumina leader of the field
- NCDC/Genome Center overview

National Center for Disease Control and Public Health

Historical Timeline

- 1870 DNA discuvery, Miescher
- 1940 DNA was proposed as Genetic Material, Avery
- 1953 Double helical structure, Watson and Crick
- 1977 sequence by Chemical degradation, Gilbert
- 1977 sequence by Dideoxy chain termination, Sanger
- 1986 Partial Automation
- 1990 Cycle Sequencing
- 2002 NGS 454, pyrosequencing

Maxam and Gilbert Sequencing technology

- Here is used purified DNA
- Chemical modification in the DNA
- The fragments are radioactively labeled at 5' end
- Chemical treatment generates the nucleotide bases
- DNA is cleaved by hot piperidine at modified base
- Modifying chemicals is applied to the DNA
- Generates radiolabeled DNA fragments
- Electrophoresis and visualized in X-rays films

Sanger Chain Termination Sequencing technology

Frederick Sanger (1918 – 2013; age 95); Sanger sequencing is a method of DNA sequencing based on the selective incorporation of chain-terminating dideoxynucleotides by DNA polymerase during in vitro DNA replication; This machine, developed in 1987, uses the Sanger method for DNA sequencing for the first time.

Capillary Sequencing Instruments

ocde ge

National Center for Disease Control and Public Health

Main Players on the Market

Companies

Roche

SEQUENCIN

illumina®

Helicos Bioscience

HeliScope™

National Center for Disease Control and Public Health

ROCHE

Next Generation Instruments

454 pyrosequencing

GS Junior

Roche and NuGEN Technologies

National Center for Disease Control and Public Health

life Technologies

Next Generation Instruments

Ion Torrent PGM

IonProton

National Center for Disease Control and Public Health

life Technologies

Next Generation Instruments

SOLiD

National Center for Disease Control and Public Health

PACBIO

Next Generation Instruments

National Center for Disease Control and Public Health

BGI

Next Generation Instruments

BGISEQ 500

BGISEQ 50

National Center for Disease Control and Public Health

BGI

Next Generation Instruments

National Center for Disease Control and Public Health

Next Generation Sequencing – Illumina Platforms

National Center for Disease Control and Public Health

Next Generation Sequencing – Illumina Platform iSeq

Run Configuration	Reads (Passing Filter)/Run	Output	Quality Scores ^b	Run Time°
1 × 36 bp	4 M	144 Mb	> 85%	9 hrs
1 × 50 bp	4 M	200 Mb	> 85%	9 hours
1 × 75 bp	4 M	300 Mb	> 80%	10 hours
2 × 75 bp	4 M	600 Mb	> 80%	13 hours
2 × 150 bp	4 M	1.2 Gb	> 80%	17.5 hours

a. Performance parameters may vary based on sample type, sample quality, and clusters passing filter.

b. The percentage of bases > Q30 is averaged over the entire run.

c. Times include cluster generation, sequencing, base calling, and quality scoring.

Next Generation Sequencing – Illumina Platform NovaSeq

National Center for Disease Control and Public Health

Next Generation Sequencing – Illumina Platform MiSeq

National Center for Disease Control and Public Health

Sequencing Future

Oxford Nanopore Technologies

MinION

SmidgION - coming soon

PromethION

National Center for Disease Control and Public Health

Genome Center Equipment

MiSeq Personal Sequencer

Applied Biosystems 3130xl Genetic Analyzer

M220[™] Focused-ultrasonicator[™] DNA Shearing for NGS

Qubit, Fluorometric Quantitation

National Center for Disease Control and Public Health

RT-PCR

Lab Space

National Center for Disease Control and Public Health

Lab Space

National Center for Disease Control and Public Health

Bioinformatics

National Center for Disease Control and Public Health

Bioinformatics

Genomics Machine Specs

-2U Rackmount w/ redundant power supply
-Dual Xeon with C602 chipset
-16 2.0Ghz E-5 series CPU cores
-128GB DDR3 1600Mhz ECC REG memory
-(8) 2TB Enterprise Hard Drive (2 x OS RAID 1, 6 x RAID 6 w/ 2 Hot Spare) roughly 3.6TB Accessible
-Slimline DVD +/- RW
-dual GigE NIC
-onboard basic graphics
-no sound
-CentOS 6.2 64-bit installed
-Storage

•Includes a 15U Rackmount Enclosure, preracked and cabled, shipping crate with ramp. Estimated value of \$2,500.00.

•Includes a 2200VA UPS with temperature monitoring card, racking and shipping. Estimated value of \$2,300.00.

•Includes Hardware testing, installation of CLC Genomics Server, and shipping to end user. The server will be installed on the cabinet, you would just need to unpack the crate, plug in the UPS and then plug in the server.

National Center for Disease Control and Public Health

First run at Genome Center 23Jan2013

National Center for Disease Control and Public Health

Thank you for your attention !

National Center for Disease Control and Public Health